Publications

Publications

Project 02

  1. Guan, Wei, et al. “Revisiting performance of reactivity stratification with hydrogen addition for ammonia combustion.” Proceedings of the Combustion Institute 40.1-4 (2024): 105381, https://doi.org/10.1016/j.proci.2024.105381

  2. Yan, S., He, X., Krüger, M., Li, Y., & Jia, Q. (2024). Additive manufacturing of a new non-equiatomic high-entropy alloy with exceptional strength-ductility synergy via in-situ alloying. Materials & Design238, 112676 https://doi.org/10.1016/j.matdes.2024.112676

  3. Guan, W., Chi, C., Szanthoffer, A. G., & Thévenin, D. (2025). A reduced kinetic mechanism for ammonia/hydrogen mixtures with alleviated stiffness and high accuracy tailored for high-fidelity numerical simulations. Applications in Energy and Combustion Science, 100377. https://doi.org/10.1016/j.jaecs.2025.100377

  4. Hemaizia, A., Guan, W., Thévenin, D., & Bentebbiche, A. (2025). The Effect of Carbon Dioxide and Water Vapor Dilution on Turbulent Premixed Propane-Air Flame Characteristics: A DES Study. Flow, Turbulence and Combustion, 1-32. https://doi.org/10.1007/s10494-025-00682-3

  5. Caban, L., Wawrzak, A., Tyliszczak, A., & Thévenin, D. (2024, November). LES of flow dynamics downstream of bluff bodies with inclined upper surfaces. In Journal of Physics: Conference Series (Vol. 2899, No. 1, p. 012014). IOP Publishing. https://doi.org/10.1088/1742-6596/2899/1/012014

  6. Guan, W., Gharibi, F., Chi, C., Abdelsamie, A., & Thévenin, D. (2025). A Ghost-Cell Immersed Boundary Method for Reacting Flow Simulations with Conjugate Heat Transfer. Journal of Computational Physics, 114399. https://doi.org/10.1016/j.jcp.2025.114399

Project 03

  1. Büßenschütt, Klaus, et al. “Mitigation of Cracks in High‐Performance Nickel‐Based Superalloys in Powder Bed Fusion Laser Beam of Metals Using a Metal Matrix Composite Approach.” Advanced Engineering Materials (2025): 2500581, https://doi.org/10.1002/adem.202500581

  2. Stich, Philipp, et al. “A combined experimental and numerical assessment of the role of microsegregation and phase formation on hot cracking susceptibility in laser powder bed fusion processed CM247LC.” Journal of materials research and technology (2025), https://doi.org/10.1016/j.jmrt.2025.06.040

  3. Yu, Chunkan, and Robert Schießl. “Numerical investigation on the inhibition effect of HBr in stoichiometric hydrogen/air mixtures on head-on flame quenching (HoQ).” Fire Safety Journal 153 (2025):104354, https://doi.org/10.1016/j.firesaf.2025.104354

  4. Yu, Chunkan, and Agustin Valera-Medina. “A comprehensive numerical study on the inhibition effect of ammonia on various (un) strained premixed stoichiometric hydrogen/air flame systems.” Energy & Fuels 39.1 (2024): 981-991, https://doi.org/10.1021/acs.energyfuels.4c04052

  5. Yu, Chunkan, et al. “Mathematical thermo‐mechanical analysis on flame‐solid interaction: Steady laminar stagnation flow flame stabilized at a plane wall coupled with thermo‐elasticity model.” ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 104.12 (2024): e202400554, https://doi.org/10.1002/zamm.202400554

  6. Yu, Chunkan, et al. “Steady laminar stagnation flow NH3-H2-air flame at a plane wall: Flame extinction limit and its influence on the thermo-mechanical stress and corrosive behavior of wall materials.” Applications in Energy and Combustion Science 18 (2024): 100261                  https://doi.org/10.1016/j.jaecs.2024.100261

  7. Chi, Cheng, et al. “Effect of differential diffusion on head-on quenching of premixed NH3/H2/air flames within turbulent boundary layers.” Proceedings of the Combustion Institute 40.1-4 (2024): 105276, https://doi.org/10.1016/j.proci.2024.10527                                                  

Project 04

  1. Howarth, T. L., Nerzak, S., Gruhlke, P., Lipkowicz, J. T., Panek, L., Pfadler, S., … & Pitsch, H. (2025). Structure and nitrogen oxide emissions of confined turbulent hydrogen jet flames. Proceedings of the Combustion Institute41, 105851. https://doi.org/10.1016/j.proci.2025.105851

Project 05

    1. Wan, J., & Gutheil, E. (2025). Numerical analysis of the unsteady transition of multiple laminar methanol/air spray flame structures in the counterflow configuration. Applications in Energy and Combustion Science, 100363. https://doi.org/10.1016/j.jaecs.2025.100363

Project 07

  1. Schneider, Max, et al. “Modeling of effusion cooling air-flame interaction using thermochemical manifolds.” Proceedings of the Combustion Institute 40.1-4 (2024): 1054535, https://doi.org/10.1016/j.proci.2024.105453

  2. Wen, X., Berger, L., Scholtissek, A., Parente, A., Hasse, C., & Pitsch, H. (2024). Numerical analysis and flamelet modeling of NOx formation in a thermodiffusively unstable premixed hydrogen flame at elevated-pressure conditions. Proceedings of the Combustion Institute40(1-4), 105411. https://doi.org/10.1016/j.proci.2024.105411

  3. Chen, X., Guivarch, T., Lulic, H., Hasse, C., Chen, Z., Ferraro, F., & Scholtissek, A. (2024). Evaluation of hydrogen/ammonia substitute fuel mixtures for methane: Effect of differential diffusion. International Journal of Hydrogen Energy69, 1056-1068. https://doi.org/10.1016/j.ijhydene.2024.05.110

  4. Schuh, V., Hasse, C., & Nicolai, H. (2024). An extension of the artificially thickened flame approach for premixed hydrogen flames with intrinsic instabilities. Proceedings of the Combustion Institute40(1-4), 105673. https://doi.org/10.1016/j.proci.2024.105673

  5. Schneider, M., Nicolai, H., Schuh, V., Steinhausen, M., & Hasse, C. (2025). Flame-wall interaction of thermodiffusively unstable hydrogen/air flames, Part I: Characterization of governing physical phenomena. Combustion and Flame279, 114320. https://doi.org/10.1016/j.combustflame.2025.114320

  6. Schneider, M., Nicolai, H., Schuh, V., Steinhausen, M., & Hasse, C. (2025). Flame-wall interaction of thermodiffusively unstable hydrogen/air flames, Part II: Parametric variations of equivalence ratio, temperature, and pressure. Combustion and Flame279, 114319. https://doi.org/10.1016/j.combustflame.2025.114319

  7. Schneider, M., Rong, F., Steinhausen, M., Hasse, C., & Nicolai, H. (2025). Flame–wall interaction of lean premixed hydrogen/air flames: Impact of transport models. Proceedings of the Combustion Institute41, 105955. https://doi.org/10.1016/j.proci.2025.105955

Project 08

  1. Kang, Y., Seidler, J., Ahn, J., Rubio, V., Maucher, C., Möhring, H. C., & Hampp, F. (2025). AM micro-structures with bespoke permeability. International Journal of Heat and Mass Transfer241, 126674. https://doi.org/10.1016/j.ijheatmasstransfer.2025.126674

Project 09

  1. Vance, F. H., & Scholtissek, A. (2025). On the potential of using mixture stratification for reducing the flashback propensity of hydrogen flames. Applications in Energy and Combustion Science22, 100327. https://doi.org/10.1016/j.jaecs.2025.100327

  2. Strickling, R., Vance, F. H., Karpowski, T. J. P., Hasse, C., & Scholtissek, A. (2025). Numerical characterization of stratified weakly turbulent hydrogen flames. Proceedings of the Combustion Institute41, 105844. https://doi.org/10.1016/j.proci.2025.105844

  3. Schmidt, N., Braeuer, P. A., Pereira, M. M., Grauer, S. J., Bauer, F. J., & Will, S. (2025). Development of a high-speed temperature sensor based on ratiometric NIR water emission for hydrogen and methane flames. Applications in Energy and Combustion Science, 100336. https://doi.org/10.1016/j.jaecs.2025.100336

Project 10

  1. Puri, R., Kretzler, D., Bock-Seefeld, B., Stelzner, B., Brachhold, N., Hubálková, J., … & Zirwes, T. (2025). Influence of dispersion length on volume-averaged simulations of ammonia/air combustion in porous media burners. Proceedings of the Combustion Institute41, 105856. https://doi.org/10.1016/j.proci.2025.105856

  2. Kretzler, D., Puri, R., Stelzner, B., Zirwes, T., Hagen, F. P., Stein, O. T., & Trimis, D. (2025). Experimental and numerical investigation of non-premixed ammonia flames stabilized on a heated slot burner. Proceedings of the Combustion Institute41, 105854. https://doi.org/10.1016/j.proci.2025.105854

  3. Heuer, C., Bock-Seefeld, B., Kaiser, P., Weigelt, C., Malczyk, P., Brachhold, N., … & Aneziris, C. G. (2025). 3D printing of alumina components via Fused Granulate Fabrication technology and solvent-free debinding of highly filled feedstocks comprising (LD)-polyethylene and cellulose. Ceramics International. https://doi.org/10.1016/j.ceramint.2025.10.048

Project 11

  1. Fröde, F., Desjardins, O., Bieber, M., Reddemann, M., Kneer, R., & Pitsch, H. (2025). Multiscale simulation of spray and mixture formation for a coaxial atomizer. International Journal of Multiphase Flow182, 104971. https://doi.org/10.1016/j.ijmultiphaseflow.2024.104971

  2. Axt, H., Kratz, M., Peters, C., Bornschlegel, B., & Hinke, C. (2025, March). 3D target shape retention within selective laser-induced etching (SLE) via simulation of chemical etching. In Laser-based Micro-and Nanoprocessing XIX (Vol. 13351, pp. 58-65). SPIE. https://doi.org/10.1117/12.3042062

  3. Massopo, O., Tischendorf, R., Gonchikzhapov, M., Kasper, T., Augustin, P., Özer, B., … & Schmid, H. J. (2025). Influence of dispersion gas flow on the spray characteristics and γ-Fe2O3 nanoparticles formation and properties in reference SpraySyn burners. Powder Technology, 121992. https://doi.org/10.1016/j.powtec.2025.121992